Research and Publications
For a full list of my publications please go to my google scholar page.
Two-dimensional materials for optical quantum technologies.
Future light-based quantum technologies include quantum networks - a distribution of quantum states and entanglement between any two points on the globe. Quantum networks will enable efficient and secure global communication. Photonic quantum networks use photons to send quantum information. A major challenge for quantum networks is finding the right materials that can send and recover quantum information via photons. In my research I study new, two-dimensional material platforms that emit single photons with favourable properties, and therefore offer a new possibilities for future quantum devices.
A quantum coherent spin in a two-dimensional material at room temperature. H.L Stern*, C. M. Gilardoni*, Q. Gu, S. Eizagirre Barker, O. Powell, X. Deng, L. Follet, C. Li, A. Ramsey, H. H. Tan, I. Aharonovich and M. Ataure. arXiv:2306.13025 (2023).
Room-temperature optically detected magnetic resonance of single defects in hexagonal boron nitride , H.L Stern*, Q. Gu *, J. Jarman*, S. Eizagirre Barker, N. Mendelson, D. Chugh, S. Schott, H. H. Tan, H. Sirringhaus, I. Aharonovich and M. Atature. Nature Communications, 13, 681, (2022).
'Two-dimensional material could store quantum information at room temperature.' Cambridge University Research News
Spectrally resolved photodynamics of individual emitters in large-area monolayers of hexagonal Boron Nitride, H.L. Stern, R. Wang, R. Mizuta, J.C. Stewart, T. D. Roberts, R. Wai, N. S. Ginsberg, D. Klenerman, S. Hofmann and S. Lee. ACS Nano, 13, 4538-4547, (2019).
Molecular materials for solar energy conversion.
Carbon-based molecular semiconductors are materials that can efficiently absorb solar photons to generate free charges. This makes these materials exciting candidates for use in solar cells, as they are solution-processable, affordable and tuneable. In addition, a class of these materials offers ways of boosting solar cell efficiencies beyond theoretical limits (Shockley Queisser limit) - via an ultrafast process that converts one photo-generated spin singlet exciton to two spin triplet excitons (single exciton fission). During my PhD, I showed how singlet exciton fission can proceed, even when the energy of the two spin triplet excitons is greater than the energy of the absorbed photon, ie. endothermic. Using a combination of ultrafast transient absorption and photoluminescence spectroscopies my research identified a critical intermediate excited state in solution and the solid state .
Elusive excited states identified from cutting-edge molecular movies. A. Musser and H. L. Stern. Nature, News and Views, 2023.
Vibronically coherent ultrafast triplet-pair formation and subsequent thermally activated dissociation control efficient endothermic singlet fission. H.L Stern, A. Cheminal, S. R Yost, K. Broch, S.L. Bayliss, K. Chen, M. Tabachyk, K. Thorley, N. Greenham, J. M Hodgkiss, J. Anthony, M. Head-Gordon, A.J Musser, A. Rao and R. H. Friend. Nature Chemistry, 9, 1205-1212 (2017).
Elucidation of excitation energy dependent correlated triplet pair formation pathways in an endothermic singlet fission system. A. Thampi, H.L. Stern, A. Cheminal, M. J.Y. Tayebjee, A.J. Petty, J.E. Anthony and A. Rao. JACS, 140,13 (2017).
Synthesis and exciton dynamics of donor-orthogonal acceptor conjugated polymers: Reducing the singlet–triplet energy gap. D.M.E. Freeman, A.J. Musser, J.M. Frost, H.L. Stern, A.K. Forster, K. J. Fallon, A.G. Rapidis, F. Cacialli, I. McCulloch, T.M. Clarke, R.H Friend and H. Bronstein. JACS, 139, 11073-11080 (2017),
Limits for Recombination in a Low Energy Loss Organic Heterojunction. S. M. Menke, A. Sadhanala, M. Nikolka, N. A. Ran, M. K. Ravva, S. Abdel-Azeim, H. L. Stern, M. Wang, H. Sirringhaus, T.Q. Nguyen, J.L. Brédas, G. C. Bazan and R. H. Friend. ACS Nano, 10,12 (2016).
Identification of a triplet pair intermediate in singlet exciton fission in solution. H.L. Stern, A.J. Musser, S. Gelinas, P. Parkinson, L. M. Herz, M. J. Bruzek, J. Anthony, R. H. Friend, and B.J. Walker, PNAS, 111, 25 (2015).
Book Chapters
Singlet exciton fission in solution. H.L. Stern, A.J. Musser and R.H. Friend. Photochemistry, 43. (2015).
Patents
GB2579061 - Field-effect transistor for sensing target molecules